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parameter is a pure imaginary, and there are no losses

in either waveguide. Thus k =jc, YI,2 =j&2. Upcm in-
serting these conditions and solving for the magnitude

of the field in the auxiliary waveguide we find that

Iq .—~=

<(BI ~ /32)2+ ~c’

(

<(/3, – ,62)’+ 4C2
.sin

)
x.

2
(15)

As the slab is moved across the main waveguide, both

pl and c are affected. The phase constant is determined

by means of (5) and the change in coupling is calculated

in the following manner. LVith the slab at d = O, the two

phase constants are equal and the coupling is found

from I E, I = sin COX. For each subsequent position of

the slab, C“ is multiplied by the factor H,3/H,0 given

in (12).
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Surmnary-This paper dkcusses the construction of millimeter

wave Fabry-Perot resonators, using both planar and spherical re-

flectors. It also discusses the equivalent circuits of planar reflectors
and the method of obtainiig efficient power transfer into the resona-

tors.
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HIS PAPER is a further report on the work on

millimeter wave Fabry-Perot interferometers

that was started in this laboratory by Culshaw. 1–5

These interferometers have become of wide interest be-

cause of their use as resonators in optical and millimeter

wave masers. These resonators have many other po-

tential uses as spectrometers, refractometers, and wave

meters.
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In the millimeter region the ratio of wavelength to

the mirror dimensions, although small compared to

unity, is much larger than in the optical region. There-

fore, diffraction losses in the millimeter region tend

to be much larger. At the same time modes are sep-

arated more widely, and it is usually possible to work

with a single mode. In the optical region mirrors are

made of semisilvered surfaces or by multilayered di-

electric surfaces. As is well known,G with such mirrors

large reflectivity is incompatible with low resonance

transmission loss. Culshaw realized that in the milli-

meter region other techniques allowing the achieve-

ment of both objectives were practical. He evolved a

scheme of drilling an array of holes in metallic sheets

and started work with metal films with photoetched

holes deposited on dielectric slabs. We have further

developed this technique and have used thin perforated

metal foils stretched on frames. This technique appears

to be the best available for use with plane reflectors.

For many applications Fox and Li7 and Boyd and

Gordon8 have demonstrated the superiority of con-
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cave mirrors over planar ones because of the greatly

reduced diffraction losses and the greater ease of align-

ment. In some of the instruments to be described later

we have applied their ideas to the millimeter region.

hIarcuse, g in independently applying them to the

millimeter region, coupled the resonator to a waveguide

by a single hole. In principle, diffraction losses should

be greater with this type of coupling, and probing the

periphery of the field with absorbing objects tends to

confirm this hypothesis. With both types of coupling

we have obtained Q values within a factor of two or

three of that computed for solid metal reflectors with

no diffraction losses. It is probable that the slightly

greater diffraction losses of the single hole feed are com-

pensated by increased reflector losses with the multi-

hole coupling. Unless a high unifcn-mity of field is re-

quired for some special application, the single hole feed

is to be preferred because of its simplicity.

THE PROPERTIES OF THIN PERFOR~TE~ REFI.ECTORS

With particular reference to the Stark spectrometer

to be described below, we were concerned with the

problem of obtaining good power transfer into the

resonator while preserving high iield uniformity and

high reflectivity. In attacking this problem we adopted

the policy of using simple approximate theory as a guide

to the extent that such theory is valid and then of

relying upon experiment to compensate for higher-

order effects. One such theory is the impedance theory.

To check the validity of the impedance theory, we set

up the transmission experiment shown in the upper

part of Fig. 1. The perforated plate is placed between

Fig. l—Transmission through a lossless perforated thin plate.

coaxial transmitting and receiving horns. The signal

received with the plate in the beam is compared to that

with it absent. Standing waves between the plate and

either horn are greatly reduced by placing absorbers at

oblique angles on either side of the plate. A magazine is

a convenient absorber, and the attenuation can be

varied b)- choosing the number of pages. The significance

of the experimental transmission coefficients was en-

hanced by separately varying the horn spacing and the

plate position along the axis. These variations pro-

g D. hlarcuse, “Maser oscillation observed from HCN maser at
88.6 MvIc,’> Puoc. IRE (Comespondence), vol. 49, pp. 1706-1707;
November, 1961.

duced no more than 0.5 db change in the transmission

coefficients. Transmission factor was taken to be the

change in power at’ the detector as measured by a

bolometer.

In the analysis of the experiment, it is assumed that

the situation is described by a wave incident upon the

plate, a wave reflected into the transmitter space, and

a wave transmitted into the detector slpace. Further-

more, the simplifying assumption is made that these

are all plane (TEM) waves of a single plane polariza-

tion. Since the beam is bounded in cross section, other

modes must actually be present, but the experimental

data show that they are of small amplitude. Such as-

sumptions also imply that the plate does not depolarize

the beam. In principle, if the rows of holes make oblique

angles with the field vectors, depoktrization can take

place. We have observed no evidence of such depolariza-

tion nor any dependence of transmission factor upon

orientation. Nevertheless, all measurements reported

here were made with the rows of holes aligned with

the field vectors.

If the space on the side of the plate away from the

source is unbounded, if losses are negligible, and if

only one mode is propagated at distances sufficiently

removed from the plate, the plate can be represented

by a susceptance in a transmission line analogy. Under

these conditions, the power carried by the reflected

wave on the side facing the source and the power carried

by the transmitted wave on the other side must equal

the power carried by the incident wave. In a trans-

mission line such a condition is produced by connecting

a susceptance across a line of infinite length. A mathe-

matical proof seems hardly necessary to establish this

equivalence, but such proofs can be found in text-

books.l” However, a mathematical treatment is re-

quired to evaluate the susceptance. Such a onelL–13

shows that, if the holes are of diameter d and in a

rectangular array with spacings a and c, the nor-

malized susceptance is approximately

3acA
b=–—. (1)

rd3

Eq. (1) is an approximation valid when a, c, and d are

small compared to A. Higher-order terms have been

derived by M unushian, l? who shows that (1) is the

appropriate expression for an array of holes. It is in-

teresting to note that when either a or c exceeds A, the

‘0 J. C. Slater, “Microwave Electronics, ” D. Iran Nostrand Co.,
Inc., New York, N. Y., Sec. 6.5; 1950.

E. Ginzton, “hIicrowave Measurements, ” McGraw-Hill Book
Co., Inc., New York, N. Y., Sec. 6.4; 1957.

11C. G. Montgomery. R. H. Dicke, and E. M. Purcell, “Princi-
ples of Microwave Circuits, “ illcGraw-Hill Book Co., Inc., New York,
N. Y., Sec. 6.11; 1948.

‘2 N. klarcuwitz, “Waveguide Handbook, ” lUcGraw-Hill Book
Co., Inc., New York, N. Y., ch. 5; 1951.

13J. Munushian, “Electromagnetic Propagat ion Characteristics
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theory breaks down qualitatively as well, because the

amplitudes produced by various holes interfere con-

structively to give maxima of radiation off the axis.

Under these conditions, the plate acts as a grating pro-

ducing more than one order of constructive interference.

In cases which are of interest in this work b is large

in magnitude compared to unity. Then it can be easily

shown that the transmission coefficient is

2~d3
T = – 20 loglo —

3acA
expressed in decibels. (2)

The argument of the logarithm is twice the reciprocal

of the susceptance. If the theory is valid, all experi-

mental points should lie on a single straight line when

the transmission coefficient is plotted against the

logarithm of twice the susceptance. With a single plate,

the susceptance is varied by varying A. Such data are

plotted along with the theoretical line in Fig. 2. With

two plates, the points lie on lines of the same slope as

the theoretical line but slightly below it. The latter

fact can probably be attributed to losses in the plates,

which are neglected in the theory. The curve represent-

ing the third plate crosses the theoretical line at high

values of the argument (small values of A). However,

this plate had comparatively large spacings between

the holes, and at short wavelengths the assumptions of

the theory are not fulfilled. With all three plates, the

holes were in a square array, and thus c =a. The data

can be considered to be in reasonable agreement with

the impedance theory. The use of this approximate

theory as a guide in the design of interferometers is

therefore justified.

The experimental data displayed in Fig. 2 were all

obtained on thin metal foils stretched on frames: that

is, foils whose thickness was small. compared to a free-

space wavelength. Brief qualitative consideration of

transmission line theory indicates that the presence of

lossless dielectric backing causes a reduced admittance

1- _*. _ o
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mismatch, resulting in more energy being transmitted

through the perforated plate than would be predicted

from (2). When the frequency is such as to cause the

thickness of the dielectric to be an integral number of

dielectric half wavelengths, the transmission coefficient

should agree with (2).

If a plane wave is normally incident upon a plane

metal surface and if r is the reflection coefficient at the

generator, the fraction of the incident power which is

dissipated in the metal is

h=l-]r l’.

If a slab of Iossless dielectric of thickness 1 and di-

electric constant K is placed in contact with the metal

on the generator side, the fraction of the power dis-

sipated in the metal is increased unless, of course, the

thickness of the dielectric happens to be exactly an

integral number of half wavelengths.

In general, the fraction of power dissipated is

K
~= to,

l+(K–l)cos~o
(2a)

where

2Tl
0=—.

Ax

tO is the value of t in the absence of dielectric, and Al is

the wavelength in the dielectric. Fig. 3 shows the rela-

tive power dissipated in the metal for three frequently

used dielectrics as a function of O. The following values

of dielectric constants have been used: 1) plate glass

9.5, 2) quartz 3.78, and 3) rexolite 2.2.

The power transmitted through a perforated sheet is

therefore increased by the factor t/togiven by (2a).

The preceding discussion applies strictly to solid metal

plates. However, our experience indicates that it holds

as an excellent approximation for perforated plates.
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Fig. 2—Transmission measurements of three perforated thin plates.
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Fig. 3—Increase in absorption in metal film
when deposited on a dielectric.
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When the thickness of the metal plate is appreciable,

it is represented by a three-terminad network, as is well

known.” If the rows of holes are oblique to the field

vectors such that depolarization effects must be con-

sidered, it can be supposed that a plate can be repre-

sented by a network having two pairs of input ter-

minals and two pairs of output terminals.

THE RESONANT FREQUENC1E:5 OF PARALLEL

PLATE INTERFEROMETERS

In all practical applications of the Fabry-Perot inter-

ferometer, observation is made along the central axis

perpendicular to the plates. What is considered as a

resonance from the microwave point of view corre-

sponds to a maximum in intensity at the center of the

field of view in an optical interference pattern. In ele-

mentary texts, the behavior is explained in terms of the

multiple reflection of plane waves between the reflec-

tors. It is assumed that these pkme waves have the

same wavelength h and phase velocity as in an un-

bounded medium. If the plates are perfectly reflecting,

the condition for resonance is then

XO = (2 D/m) (3)

where D is the separation and m is any positive in-

teger. The frequency is given by dividing X. into the

phase velocity.

Such a description is inadequate to explain all of the

recent observations. Schawlow and Townes,ll in pro-

posing the use of the Fabry-Perot interferometer as a

resonator for optical masers, suggested that it should

be considered as a rectangular box with four open

sides. A transmission line with both ends short cir-

cuited resonates at the same frequencies as when both

ends are open circuited except that the positions of the

nodes and antinodes are interchanged. Analogously, if

the interferometer has rectangular plates, each of

dimensions A and B separated by a distance D, it can

be expected to resonate at the same frequencies as a

closed rectangular box of the same dimensions where

the free-space wavelengths are given very accurately by

A =2M’1$$’!<-11’
m,n,p

[ 1 (4)D2 .4’ B’ ‘

where m, n, and F are nonzero integers.

The theoretical work of Fox and Li7 investigated the

field patterns and showed that they do indeed differ

from plane waves. Symmetry considerations require

that n and @ be odd integers for modes which are ob-

served with coupling which is symmetrical about the

central axis of the instrument. In the following we as-

sume this symmetry.

In most practical situations, the second and third

terms in the brackets of (4) are small compared to

the first. In cases where they may be completely neg-

14 A. L. sch~,vl~w and C. H. Townes, ‘{Infrared and optical

masers, ” Pkys. Ret!., vol. 112, pp. 1940- 19!9; December, 1958.

lected, it can be seen that h~,a,p becomes equal to AO

obtained in the elementary theory. In conventional

optical situations these terms are generally so small that

modes of the same m and differing n and p lie so close

together as not to be resolved, and the elementary

theory is adequate. However, with masers, the resolu-

tion is such that the frequencies emitted as the result of

simultaneous oscillation in several of these modes can

be resolved. The modes with the lowest values of n and

~, namely unity, have the highest Q and give rise to

the strongest maser lines. Also they generally produce

the strongest and sharpest resonances in the inter-

ferometers described in the paper. The original report

on the helium-neon gas maser15 contains excellent ex-

perimental verification of the validity of (4).

In that paper the strong signals at 15 O-MC intervals

are due to beating of modes with different m’s but all

with n = 1 and @= 1. The weaker peaks displaced by

1.5 Mc are due to beats between a mode described by

n = 1 and ~ = 1 and a mode with a different m andl either

n or @ equal to 3 while the other of these two quantities

remains equal to 1. Quantitatively these values are

consistent with (4) and the geometry of the apparatus,

in which B =A.

For many purposes it is convenient to employ an

approximation for (4) by expressing D in terms of AO

by (3) and retaining only first-order terms in a binorn-

inal expression. B is set equal to .4, since this condition

usually prevails. Then

Since n and @ are never zero, the second term on the

right is not identically zero and it must be considered

if the Fabry-Perot resonator is used as a wavemeter of

the highest available accuracy. AO may be determined

by measuring the displacement of one plate between

major resonances. Then a correction can be deter-

mined by substituting this value into the second term

of (5). A can be determined from geometry or by meas-

uring the frequency shift between a main resonance for

which n = 1 and $ = 1 to a subsidiary one where one or

both has a higher value.

THE Q OF PARALLEL PLATE ReSOnatOrS

The unloaded Q of a parallel plate resonator is given

approximately by the following well-known expression~

m~
(6)

‘=l–[r~

wherein I’ is the amplitude reflection coefficient of the

surfaces. In (6) diffraction losses are neglected, and in

the numerator an approximation has been made by

15 A. Javan, ltl. R. Bennett, Jr., and R. Herriott, “Population in-

version and continuous optical maser oscillation in a gas discharge
containing a He-Ne mixture, ” Plsys. Rev. Left., vol. 6, pp. 106-1 10;
February, 1961.
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setting I r 12~1 in a more exact expression. This latter

approximation is valid under all circumstances which

are of interest. This equation has been derived on the

basis of the elementary plane wave theory.

According to (6), Q should increase linearly with w

(or D). However, at larger spacings diffraction becomes

important and limits the Q obtainable. This situation is

illustrated by the experimental data presented in Fig. 4.

The data lie on a straight line until D becomes com-

parable to A, which is equal to 14 cm in this instru-

ment. Then Q falls below the line. In this experiment

the holes were such as to give weak coupling. The meas-

ured Q is therefore essentially the unloaded Q.

The straight line of greater slope in Fig. 4 represents

the calculated value of Q if the plates were made of

solid aluminum. The fact that the slope of the experi-

mental line is a factor of 8 or so less indicates that the

surface losses are correspondingly greater than for solid

plates. This is not unreasonable because the plates

used in this experiment had thin films barely one skin

depth thick deposited on glass. The dielectric slab

also increases the natural loss of the metal film as

given by (2a). Data obtained in this laboratory on

thicker plates indicate that surface losses are no more

than 2 or 3 times greater than calculated for solid

plates.
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Fig. 4—The measured Q vs mirror separation of
a parallel plate Fabry-Perot resonator.

EFFICIENT POWER TRANSFER

For many applications, it is necessary to obtain

efficient power transfer into the resonator. With reac-

tion resonators and a single horn serving as both trans-

mitter and receiver, it is first necessary to get good

power transfer in order to distinguish the resonance

from a large background of reflected power. A trans-

mission resonator is easier to adjust since input and

output are naturally separated. If a transmission res-

onator is used in a maser, weak coupling to the trans-

mitter and close coupling to the detector are desired for

optimum sensitivity. Otherwise more of the signal

developed by the sample between the plates is wasted

in the generator.

In the former case, exactly, and in the latter case,

approximately, we may consider one of the two plates

to be opaque. To determine the conditions for optimum

power transfer to the horn adjacent to the perforated

plate, we apply the impedance theory mentioned

earlier. This theory assumes the plane wave approxima-

tion. At first we shall neglect losses in the perforated

plate. This assumption appears to be illogical since a

perforated plate might be expected to be intrinsically

more lossy than a solid one. However, later considera-

tions will show that, contrary to our intuition, the

losses due to this plate do not play an important role.

When these losses are neglected, it is more convenient

to work with admittance than impedance.

According to basic electromagnetic theory, a solid

metallic plane surface at normal incidence can be

represented as a normalized admittance of

y=g(l–j)

where

()
1/2

~= z and p = p.
4mof

(7)

and where a =conductivity of the metal, f is the fre-

quency, and CO is the permittivity of empty space.

With frequencies in the millimeter wave region and

with metals of good conductivity g is a large number,

something between 103 and 104.

As the plane of reference moves away from the metal,

the admittance changes in accordance with transmis-

sion line theory. It is then possible, in principle, to

choose D in such a way that the normalized conduc-

tance at the reference plane is unity while the suscep-

tance is positive. Then if the perforated plate is placed

here and if the hole pattern is selected in such a way

as to make the negative susceptance equal in magnitude

to the positive transformed susceptance of the solid

plate, a perfect admittance match is obtained.

Because g is so large the Smith Chart cannot be used.

For the same reason the analytical expression can be

considerably simplified. Applying standard transmis-

sion line theory and making various approximations,

the following simple results can be obtained. These

approximations include 1) neglecting terms of the order

of unity and of the order of ~~ in comparison with

terms of the order of g, 2) approximating the tangent

of the phase angle by the angle in radians, 3) retaining

only lead terms in binominal expansions.

The required value of normalized susceptance for the

hole pattern is

b = – (2g)1/2. (8)
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The reflection coefficient of the solid metal surface is

l+j
r=—––– 1 (9)

g

and

lr[’=l-~. (10)
g

The required distance D is given by the roots of the

equation

tan @D = – (1/2g)112 (11)

where

By use of (6) and (7) it can be shown that

Q+. (12)

Up to this point losses in the perforated plate have

been neglected. There is a theoretical argument which

indicates that if the surface admittance of this plate is

of the same order of magnitude as that of the solid

plate, the effect of these losses is to make only minor

changes in the hole diameter ancl plate separation re-

quired for optimum power transfer. Therefore, com-

pensation for these effects can be accomplished by

changing slightly these quantities by experiment.

Since this theoretical argument is lengthy and prob-

ably of little interest, it will not be given here. How-

ever, our actual experience indicates that it is justified

in practice.

A PARALLEL PLATE STARK CELL

In the design of a Fabry-Perot interferometer for use

in observing the Stark effect in millimeter wave molec-

ular spectra we have applied the principles of the

previous sections. This device is shown in Figs. 5 and 6.

One plate is solid, and the other is composed of a copper

foil 0.0015 inch thick with a square array of holes.

Both are gold plated. The solid plate is mounted on

insulators so that a dc or low-frequency ac voltage can

be applied between reflectors.

The ring which supports the insulators is supported

by three magnetostriction transclucers. These employ

nickel armatures 2 inches long and 0.25 inch in dianle-

ter. The magnetic circuits are completed with soft iron

except for small air gaps. By dissipating a few watts

of dc power in the transducer coils it is possible to

nearly magnetically saturate the armatures producing

a contraction of about 50 microinches. If all three coils

are excited, the plate is transklted an amount cor-

responding to detuning the cavity by about the 3-db

bandwidth, thus achieving fine tuning. If the trans-

Fig. S—Parallel plate Stark cell with vacuum cover removed.

Fig. 6—Assembled view of parallel plate Stark
cell showing associated equipment.
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ducers are excited differently, this effect may be used

to change the alignment, Coarse alignment adjustment

is made by three screws holding the perforated reflector

to the main frame. Coarse tuning is accomplished by a

lead screw in the shaft from which the reflector is sup-

ported. The apparatus is provided with a gasketed

cover having a plastic front. The lead screw extends

through the vacuum envelope allowing coarse tuning

adjustment even when the chamber is evacuated.

The foil is stretched on the frame before the insertion

of the holes. For the insertion, it is then laid on backing

material. The holes used in this interferometer were

inserted by a specially made punch, but in other plates

with larger holes, drills have been used.

By the use of measurements with calipers, the plates

can be made sufficiently parallel to make resonances

detectable. The final adjustment makes the resonances

as sharp as possible. Putting the vacuum cover in place

has only little effect on the response.

Fig. 6 shows the assembly of the interferometer and

some of the associated equipment. The assembly em-

ploys a frame composed of two standard relay racks tied

together by horizontal bars which holds the interferom-

eter, vacuum system, and many of the associated elec-

tronic instruments. The horn which feeds the inter-

ferometer, as well as the klystron and the associated

microwave components, are mounted on a shelf with

wheels using two of the horizontal tie bars as tracks.

By means of a lead screw adjustable at a panel on each

relay rack, the horn-resonator spacing can be conven-

iently varied to obtain the optimum power transfer when

the impedance match is not perfect.

This interferometer was designed with the intent of

producing a uniform dc field between the plates. The

array of holes occupies a 2-inch square. The horn is ap-

proximate y 1,5 inches square. Practical experience as

well as theory indicate that with close plate spacing the

RF field is confined to a cross section slightly larger than

the area of the array of holes. The dc field between the

plates extends far beyond the RF field, assuring Stark

field homogeneity within the active volume. The spac-

ing between the plates can be varied between 7 mm and

45 mm. The widest spacing is slightly less than the size

of the hole pattern. For a design center wavelength of

4.29 mm, the m values range from 4 to 10. Consideration

of a number of conflicting factors leads to the choice of a

moderately small spacing as preferable for the present

application. Factors favoring small spacing are 1) rela-

tive freedom of inhomogeneity in the Stark field caused

by edge effects and 2) relative freedom from pulling of

the frequency of spectral lines by the response of the

resonator. At close spacings the Q is low and the cavity

resonance is broad. The factors favoring large spacing

are 1) decrease in relative inhomogeneities in the Stark

field caused by the holes and 2) high signal-to-noise ratio

because of higher Q. It appears that the latter factors

are less important than the former. However, the opti-

mum spacing is to be determined by experiment.

The hole pattern was designed for operation at 3-mm

wavelength. A spacing of 0.1 inch was selected as being

a convenient value slightly less than the wavelength

(O. 118 inch). As mentioned earlier a spacing greater than

a wavelength is undesirable because of the reinforce-

ment of resonances with maxima off the axis. While the

apparatus was being fabricated, it was decided to

change the operating wavelength to 4.29 mm (0.169

inch). ~~nder these conditions, for gold, (7) gives

g = 2.28 X 103, and (8) gives the required susceptance for

the holes as —67.4. By (1) the required hole size is

0.029 inch. In order to test the theory the reflection

coefficient was determined experimentally and it was

found that holes with 0.1 inch spacing but with di-

ameters of 0.037 inch yielded nearly 100 per cent ab-

sorption for values of m = 5 to m = 15 at a frequency of

70 Gc. Subsequent measurements at 55.2 Gc using the

same hole pattern indicate an absorption of approxi-

mately 10 per cent. This corresponds to an SWR of

9:1 and gives some indication of the bandwidth charac-

teristics of the array of holes as a coupling device.

Experimentally the degree of impedance mismatch is

nearly independent of the horn-to-resonator spacing

and of the spacing between reflectors. This latter fact

is expected if the preceding theory is valid. If the shunt

impedance is defined as the ratio of rms electric field

strength to magnetic field strength at a reference plane

where the latter is a minimum, it can be inferred that

this quantity depends only on ] r 12 and not on m. There-

fore it is not an explicit function of Q and increasing m

does not change the field strength although it increases

Q. In these respects this type of resonator differs from

the conventional one.

If the above value of g is substituted into (12), Q/m

is calculated to be 3.6 X 103. No attempt was made to

make an accurate measurement, but a rough measure-

ment indicated good agreement.

A discussion of the Stark effect for the measurement

of voltage and the application of this instrument will

be discussed by two of the present authors in another

paper.le

SPHERICAL RESON.4TORS

If a uniform Stark field is not needed and relatively

narrow spectral lines are to be investigated, the high Q

and small size of the spherical plate resonator recom-

mend its use. The sensitivity of a resonant cavity to

small changes in cavity loss is well knownlT to be

A V/ V = Qha/27r where V is the voltage incident on the

detector at cavity resonance and a is the free-space at-

tenuation of the gas sample within the resonator. With

a loaded Q of 105, it is practical to measure very small

lb Y. Beers and G. Strine, “The Measurement of Voltage by Use
of the Stark Effect, presented at Internat’1 Conf. on Precision Meas-
urements, Boulder, Colo.; .4ugust 1+–17, 1962.

17 C. H. Townes and .4. L. Schawlow, “Microwave Spectroscopy, ”

McGraw-Hill Book Co., Inc., New York, N. Y., Sec. 15-11; 1955.
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values of a. The limitation imposed by restricting the

resonance bandwidth of the cavit:y to be several times

the natural Iinewidth of the gas sample is ameliorated

by an absence of spectral line broadening due to colli-

sions between the molecules and the cavity walls. The

gas pressure can be reduced until pressure broadening

is equal to Doppler broadening. For oxygen at room

temperature this would occur at about 30 microns pres-

sure and give a linewidth of some 0.25 Mc compared

with a cavity bandwidth of 0.6 Mc if the Q were 105.

Possible saturation effects in a gas contained in a

resonator with such a large Q are not as great as Q alone

might imply. As pointed out earlier, in this type of cav-

ity the electric field is not enhanced in the same way as

in a simple R-L-C equivalent circuit. From the definition

of Q and (6) it can be shown that for a closely coupled

resonator with a loaded Q of Q~ the ratio of the electric

field within the cavity to that in the transmission line

driving it is approximately (Q~A JA,wm) l/z, where Ar

and A Oare the effective areas of the resonator and input

transmission line, respectively. This ratio is about unity

in the spectrometer to be described.

The spherical plate spectrometer shown in Fig. 7 was

designed to isolate the resonator as well as possible from

any mechanical forces which might tend to deform it

when evacuated. This allows it to be used as a refrac-

tometer by measuring the detuning of the cavity as

gas is admitted to different pressures. The resonator it-

self consists of a spherical brass surface of 20-inch radius

of ‘curvature facing a flat brass surface nominally 10

inches away. The waveguide feed terminates in the

center of the flat plate with an 0.063-inch hole coupling

the waveguide to the resonator. The spherical surface is

supported on three legs above the flat surface and can

be screwed along its axis for tuning. This adjustment

can be made through the vacuum container by a retract-

able finger which can be disengaged to avoid communi-

cating forces to the structure when the pressure is

changed. The open aperture of the mirrors is 4.5 inches

and the whole resonator fits within a 14-inch length of

6-inch O. D. glass or plastic pipe.

At the top end of the transparent vacuum container

a scale is afixed in order to record the axial position of

the spherical mirror. The screw thread is metric so that

the spectrometer serves also as a precision wavemeter

when required. Moving the mirror between two reso-

nances is a translation quite close to a half wavelength

which can be read directly in millimeters on the scale.

The brass surfaces were finished to a high polish and

precision of a few ten thousandths of an inch. The

loaded Q is close to 105 at wavelengths of 5 mm. The

parameter a2/bX used by Fox and Li to compute diffrac-

Fig. 7—Spherical plate spectrometer inside
transparent vacuum cover.

tion losses is 1.3 for 5-mm wavelength, suggesting that

higher modes than the fundamental TEM~OO may be

supported. This notation was introduced by Fox and

Li.7 Indeed the axially symmetric TEM~Ol mode has

been identified and behaves qualitatively in all respects

as predicted by Fox and Li.

A spherical plate resonator of small dimensions has

been constructed specifically for use as a wavemeter over

the waveguide band 50 to 7.5 Gc. The radius of curva-

ture of the spherical mirrors is only 2 inches, about 10

wavelengths, but it performs quite well. The details of

this instrument are discussed elsewhere.18
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